1. Contextualisation

La carte micro:bit, éditée par la BBC, est un un microcontrôleur (microprocesseur avec mémoire et entrées/sorties). Elle est munie d'un processeur ARM et de plusieurs capteurs et interfaces de connexion. Il n'a donc pas de système d'exploitation mais permet d'exécuter des programmes.

Fonctionnalités incluses :

Capteurs de lumière, de température, broches de connexion, communication sans fil (Radio et Bluetooth), interface USB.

Le robot micro:Maqueen pour carte micro:bit est basé sur une carte permettant le contrôle des deux moteurs intégrés. Ce châssis comporte également un détecteur à ultra son, deux suiveurs de lignes ...

Il est alimenté à 3,5 V par un bloc de 3 piles AAA.

<u>Prise en main</u> :

🔏 À Faire : Effectuer les actions suivantes :

- 1. Télécharger le fichier maqueen.py sur le site de M. Ramstein
- 2. Se rendre à l'adresse https://python.microbit.org/v/3
- 3. Dans l'interface Web, nous allons importer un fichier nécessaire au fonctionnement du robot
 - 1. Cliquer sur
 - Sur 🖸 Project
 - 2. Cliquer sur open (🕞 Open...
 - 3. Sélectionner le fichier maqueen.py téléchargé à l'étape 1
 - 4. Cliquer sur 🖻 puis cliquer sur 🗸 Add file maqueen.py puis Confirm
- 4. Connecter la carte micro:bit à l'ordinateur via le câble USB,
- 5. Cliquer sur 😵 Send to micro:bit ; cela a pour effet de charger le code python sur la carte.

2. Faire avancer le robot

1	from microbit import *		
2	from maqueen import Maqueen		
3			
4	robot = Maqueen()		
5	robot.avance(40) # Valeur de 0 à 100		
6	sleep(500) # Valeur en ms		
7	robot.stop()		
🗹 À Faire : Effectuer les actions suivantes :			

- 1. Modifier les valeurs des lignes 5 et 6 pour étudier le comportement du robot.
- 2. À chaque modification de code, ne pas oublier de cliquer sur 😵 Send to micro:bit
- 3. Quel est l'effet de la ligne 5 ?
- 4. Quel est l'effet de la ligne 6?

3. Faire tourner le robot sur lui-même

- 2 from maqueen import Maqueen
- 3
- 4 robot = Magueen()
- 5 robot.moteurGauche(40) # Vitesse du moteur gauche en % de la puissance
- 6 |sleep(500)
- 7 robot.stop()

🛋 À Faire : Modifier le code pour faire tourner le robot sur lui-même, i.e à 360°.

4. Avancer le robot jusqu'à détection d'un obstacle

1 from microbit import *
2 from maqueen import Maqueen
3
4 robot = Maqueen()
5 while True:
6 distance_obstacle = robot.distance()
7 print(distance_obstacle)
8 sleep(500)

Mesure la distance d'un éventuel obstacle# Affiche la distance# Temporise de 500 ms

À Faire : Modifier le code pour qu'il affiche un message "Attention, obstacle" lorsque le robot détecte un obstacle à moins de 15 cm. <u>Aide</u> : Cliquer sur _{Show serial} pour afficher les valeurs.

A Faire : Modifier le code pour que le robot avance à 40 % de sa puissance de manière infinie et s'arrête lorsqu'il détecte un obstacle à moins de 15cm.

5. Suivre une ligne

1	from microbit import *
I	
2	from magueen import Magueen
3	
4	robot = Magueen()
5	
6	while True:
7	detecteur_gauche = pin13.read_digital() # Mesure la valeur du capteur de suivi gauche
8	detecteur droit = pin14.read digital() # Mesure la valeur du capteur de suivi droit
9	print(detecteur gauche "-" detecteur droit) # Δ ffiche les valeurs
10	(active and a second se
10	sleep(500)

📧 À Faire : Effectuer les actions suivantes :

- 1. Exécuter le code et tester sur un support comportant une ligne noire sur fond blanc.
- 2. Quel est le domaine de valeur des capteurs de suivi ?
- 3. Quelle est la correspondance entre les valeurs mesurées et la couleur du support détectée ?

Couleur détectée	Valeur mesurée
Blanc	
Noir	

🔏 À Faire : Modifier le code pour que le robot suive une ligne noire selon les règles suivantes :

 Quand les 2 capteurs suiveurs de ligne voient du noir, le robot doit aller tout droit. Les moteurs sont à la même vitesse.
Lors d'un virage à droite, le capteur de gauche voit du blanc et le capteur de droite voit du noir. Il faut que le robot tourne à droite, ce qui implique que le moteur de droite s'arrête pour que le moteur de gauche tourne plus vite.
Lors d'un virage à gauche, le capteur de gauche voit du noir et le capteur de droite voit du blanc. Il faut que le robot tourne à gauche, ce qui implique que le moteur de gauche s'arrête pour que le moteur de droite tourne plus vite.
Quand les 2 capteurs suiveurs de ligne voient du blanc, le robot s'arrête.

6. Contrôler le robot via une télécommande micro:bit

La carte micro:bit est équipée d'un émetteur/récepteur radio qui permet à deux cartes de communiquer à distance.

Durant cette activité :

- Vous travaillerez en binôme avec chacun une carte.
- Un code canal vous est attribué. Notez-le ici

A Faire : Effectuer les actions suivantes :

	Carte « Émetteur »		Carte « Récepteur »
1	from microbit import *	1	from microbit import *
2	import radio	2	import radio
3		3	
4	radio.config(channel=X) # Active le canal	4	radio.config(channel=X) # Active le canal
5	radio.on() # Active la connexion radio	5	radio.on() # active la connexion radio
6	while True:	6	while True:
7	if button_a.was_pressed():	7	message = radio.receive()
8	radio.send("Hello !")	8	if message:
		9	display.scroll(message)

- 1. Copier les codes ci-dessus dans les interfaces Web et cliquer sur 🛛 🕴 Send to micro:bit
- 2. Décrire l'effet du programme sur la carte. Une interaction est-elle possible ?
- 3. Quelles lignes permettent d'envoyer et recevoir un message ? Quelle type d'information est échangée ?

A Faire : Modifier les codes des cartes « Émetteur » et « Récepteur » pour que les règles suivantes s'appliquent.

Action de l'« Émetteur »	Effet sur le « Récepteur »
Appui sur le bouton A	Le robot tourne à gauche
Appui sur le bouton B	Le robot tourne à droite

